Netzwerke bieten eine leistungsstarke Darstellung- und Analysemöglichkeit komplexer Systeme. Je nach Größe und Komplexität des Netzwerks stoßen aber viele Visualisierungen an ihre Grenzen. Ein derartig komplexes, kaum darstellbares System bilden die Protein-Interaktionen im menschlichen Körper. Jörg Menche, Adjunct Principal Investigator am CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften, Professor an der Universität Wien sowie Forschungsgruppenleiter der Max Perutz Labs (Uni Wien/MedUni), entwickelte mit seinem Team eine immersive Virtual Reality (VR)-Plattform, die dieses Problem löst. Mithilfe der VR-Visualisierung von Proteininteraktionen sollen zukünftig Zusammenhänge besser erkannt und jene genetischen Abweichungen identifiziert werden können, die für seltene Krankheiten verantwortlich sind.
Je größer und komplexer Netzwerke sind, desto schwieriger wird auch ihre Visualisierung auf dem Bildschirm. Herkömmliche Computerprogramme stoßen dabei schnell an ihre Grenzen. Dieser Herausforderung widmeten sich Netzwerkwissenschaftler Jörg Menche und seine Forschungsgruppe am CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften. Sie entwickelten eine VR-Plattform, die es ermöglicht, riesige Datenmengen und deren komplexes Zusammenspiel auf eine einzigartige, intuitive Weise zu untersuchen.
Besonders wichtig kann die Darstellung komplexer Daten bei der Suche nach der Ursache seltener Erkrankungen sein, denn der menschliche Körper stellt mit seinen rund 20.000 Proteinen, die im menschlichen Genom codiert sind und miteinander interagieren, ein riesiges komplexes Netzwerk dar. Egal ob Bewegung oder Verdauung – auf molekularer Ebene basieren sämtliche biologischen Prozesse auf der Interaktion zwischen Proteinen. Stellt man die Protein-Interaktionen in einem Netzwerk dar, entsteht ein kaum darstellbares Bild aus rund 18.000 Punkten – Proteinen – und rund 300.000 Strichen zwischen diesen Punkten. Um dieses Bild „lesbar“ zu machen, nutzten Menche und seine Forschungsgruppe die von ihnen entwickelte Virtual Reality (VR)-Plattform und schafften es in Zusammenarbeit mit der St. Anna Kinderkrebsforschung erstmals, die Gesamtheit der Proteininteraktion sichtbar zu machen. Dies ermöglicht es, das riesige und komplexe Netzwerk interaktiv zu erkunden.
Für ihre Studie, die in Nature Communications publiziert wurde, identifizierten Studienautor Sebastian Pirch und Menches Forschungsgruppe Verbindungsmuster zwischen verschiedenen Proteinkomplexen im menschlichen Körper und brachten diese mit ihrer biologischen Funktion in Verbindung. Zudem identifizierten die WissenschaftlerInnen mithilfe globaler Datenbanken spezifische Proteinkomplexe, die mit einer bestimmten Krankheit assoziiert werden. „Während herkömmliche Darstellungsformen wie ein einziger Heuhaufen aussehen würden, ermöglicht die 3-dimensionale Darstellung die genaue Analyse und Beobachtung der verschiedenen Proteinkomplexe und ihrer Interaktionen“, so Studienautor Pirch. Dies kann insbesondere bei der Identifikation seltener Gendefekte wichtig und entscheidend für therapeutische Maßnahmen sein. „Unsere Studie stellt einerseits einen wichtigen ‚Proof of concept‘ unserer VR-Plattform dar, andererseits zeigt sie unmittelbar das enorme Potenzial der Visualisierung molekularer Netzwerke“, so Projektleiter Menche. „Gerade bei seltenen Erkrankungen, schweren Immunerkrankungen, können Proteinkomplexe, die mit spezifischen klinischen Symptomen assoziiert werden, genauer analysiert werden, um Hypothesen über ihre jeweiligen pathobiologischen Mechanismen zu entwickeln. Dies erleichtert die Annäherung an Erkrankungsursachen sowie infolge die Suche nach gezielten therapeutischen Maßnahmen.“
Die von Menches Forschungsgruppe entwickelte Plattform ist auf maximale Flexibilität und Erweiterbarkeit ausgelegt. Zu den wichtigsten Funktionen gehören der Import von benutzerdefinierten Codes für die Datenanalyse, eine einfache Integration externer Datenbanken und hoher Gestaltungsspielraum für beliebige Elemente der Benutzeroberfläche. Dabei konnten die ForscherInnen auf eine Technologie zurückgreifen, die normalerweise in der Entwicklung von 3-D-Computerspielen genutzt wird, wie zum Beispiel für das weltweit populäre Spiel Fortnite. Durch die Veröffentlichung des Quellcodes hoffen die WissenschaftlerInnen, auch andere EntwicklerInnen vom Potenzial von Virtual Reality zur Analyse wissenschaftlicher Daten überzeugen zu können.
(Quelle: Pressemitteilung des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften vom 23.04.2021, gekürzt)
Wissenschaftliche Studie in Nature Communications „VRNetzer: A Virtual Reality Network Analysis Platform“ DOI: 10.1038/s41467-021-22570-w.